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IMPORTANCE Precise estimation of the drug metabolism capacity for individual patients is
crucial for adequate dose personalization.

OBJECTIVE To quantify the difference in the antipsychotic and antidepressant exposure
among patients with genetically associated CYP2C19 and CYP2D6 poor (PM), intermediate
(IM), and normal (NM) metabolizers.

DATA SOURCES PubMed, Clinicaltrialsregister.eu, ClinicalTrials.gov, International Clinical Trials
Registry Platform, and CENTRAL databases were screened for studies from January 1, 1990,
to June 30, 2020, with no language restrictions.

STUDY SELECTION Two independent reviewers performed study screening and assessed the
following inclusion criteria: (1) appropriate CYP2C19 or CYP2D6 genotyping was performed,
(2) genotype-based classification into CYP2C19 or CYP2D6 NM, IM, and PM categories was
possible, and (3) 3 patients per metabolizer category were available.

DATA EXTRACTION AND SYNTHESIS The Meta-analysis of Observational Studies in
Epidemiology (MOOSE) guidelines were followed for extracting data and quality, validity, and
risk of bias assessments. A fixed-effects model was used for pooling the effect sizes of the
included studies.

MAIN OUTCOMES AND MEASURES Drug exposure was measured as (1) dose-normalized area
under the plasma level (time) curve, (2) dose-normalized steady-state plasma level, or (3)
reciprocal apparent total drug clearance. The ratio of means (RoM) was calculated by dividing
the mean drug exposure for PM, IM, or pooled PM plus IM categories by the mean drug
exposure for the NM category.

RESULTS Based on the data derived from 94 unique studies and 8379 unique individuals, the
most profound differences were observed in the patients treated with aripiprazole (CYP2D6
PM plus IM vs NM RoM, 1.48; 95% CI, 1.41-1.57; 12 studies; 1038 patients), haloperidol lactate
(CYP2D6 PM vs NM RoM, 1.68; 95% CI, 1.40-2.02; 9 studies; 423 patients), risperidone
(CYP2D6 PM plus IM vs NM RoM, 1.36; 95% CI, 1.28-1.44; 23 studies; 1492 patients),
escitalopram oxalate (CYP2C19 PM vs NM, RoM, 2.63; 95% CI, 2.40-2.89; 4 studies; 1262
patients), and sertraline hydrochloride (CYP2C19 IM vs NM RoM, 1.38; 95% CI, 1.27-1.51; 3
studies; 917 patients). Exposure differences were also observed for clozapine, quetiapine
fumarate, amitriptyline hydrochloride, mirtazapine, nortriptyline hydrochloride, fluoxetine
hydrochloride, fluvoxamine maleate, paroxetine hydrochloride, and venlafaxine
hydrochloride; however, these differences were marginal, ambiguous, or based on less than 3
independent studies.

CONCLUSIONS AND RELEVANCE In this systematic review and meta-analysis, the association
between CYP2C19/CYP2D6 genotype and drug levels of several psychiatric drugs was
quantified with sufficient precision as to be useful as a scientific foundation for
CYP2D6/CYP2C19 genotype-based dosing recommendations.
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T he efficacy of psychiatric drugs is suboptimal; how-
ever, because the development of new antipsychotics
and antidepressants is slow, it is of paramount impor-

tance to use the currently available drugs as effectively as pos-
sible. An important aspect of effective use is dose personal-
ization because, owing to interindividual differences in drug
metabolism, the dose required to achieve optimal blood lev-
els of antidepressants and antipsychotics varies substantially
between patients.1 Recently published meta-analyses2,3 fo-
cused on dose-response curves for antipsychotics and antide-
pressants supported the claim that the appropriate dosing is
important for maximizing the efficacy and tolerability of these
drugs. In addition, according to recently published data on
more than 5000 patients,4-6 when treated with escitalopram
oxalate, 10 mg/d, sertraline hydrochloride, 100 mg/d, risperi-
done, 4 mg/d, or aripiprazole, 20 mg/d, more than one-third
of the patients exhibit blood drug levels outside the therapeu-
tic concentration window defined for these drugs.1 There-
fore, although these daily doses fit an average patient well,
there is an apparent need to personalize the dose and maxi-
mize the treatment response beyond population-based
dosing.

Most antipsychotics and antidepressants are metabo-
lized by the polymorphic CYP2C19 and CYP2D6 enzymes,1 and
their capacity is genetically determined.7,8 First, normal me-
tabolizers (NM category) have normal enzymatic capacity and
carry homozygous wild-type (Wt) alleles; they may also carry
other genotypes if the enzymatic capacity is not significantly
different compared with Wt/Wt carriers. Second, CYP2C19/
CYP2D6 genotype-determined poor metabolizers (PM cat-
egory) carry homozygous loss-of-function alleles and do not
possess the active enzyme. Third, CYP2C19/CYP2D6 genotype-
determined intermediate metabolizers (IM category) carry
genotypes connected with substantially reduced but not abol-
ished enzymatic capacity. Finally, CYP2C19/CYP2D6 genotype-
determined ultrarapid metabolizers (UM category) carry geno-
types connected with higher-than-normal enzymatic capacity.
All these phenotypes are present in substantial proportion
worldwide (Table 1).9

Well-replicated clinical findings indicate that the pa-
tients in the PM and IM categories exhibit a substantial in-
crease in the exposure and adverse drug reactions of certain
psychotropic drugs,4-6,10,11 whereas those in the UM category
most often have lower levels of response, owing to faster drug
metabolism.4,5,12,13 In addition, recent studies4,5 found that
those in the PM and UM categories are more prone to risperi-
done and escitalopram treatment failure, which was quanti-
fied as an increase in the incidence of switching to an alterna-
tive antipsychotic/antidepressant within 1 year. The
recommended and maximum daily doses are originally de-
signed to fit the mean genotype-weighted population. Thus,
the official dosing recommendations for psychiatric drugs usu-
ally do not acknowledge the clinical relevance of CYP2C19/
CYP2D6 metabolizer categories and do not distinguish be-
tween them. Investigators4-6 observed, however, that the daily
doses of escitalopram, sertraline, risperidone, and aripipra-
zole, prescribed in naturalistic settings based on clinical ob-
servations alone, were lower in individuals in the PM com-
pared with NM categories and that the observed dose

Key Points
Question What is the difference in the expected antipsychotic
and antidepressant exposure between genetically associated
CYP2C19 and CYP2D6 poor (PM), intermediate (IM), and normal
(NM) metabolism?

Findings A systematic review and meta-analysis of 94 unique
studies and 8379 unique patients quantified the increases of
risperidone, aripiprazole, and haloperidol exposure in patients
with CYP2D6 PM and IM status and increases of escitalopram and
sertraline exposure in patients with CYP2C19 PM and IM status as
compared with patients with the NM group.

Meaning The obtained results represent a scientific foundation
for CYP2D6/CYP2C19 genotype-based dosing recommendations
that could potentially lead to improved clinical outcome in drug
treatment for patients with psychiatric disorders.

Table 1. Allele Frequencies of Variant CYP2C19 and CYP2D6 Genes Among Different Populations Worldwidea

Genotype-based phenotype
by metabolism category

Population, %

European African East Asian South Asian Admixed American
CYP2C19

PM 3.3 3.3 14.2 11.8 1.1

IM 21.7 21.2 45.8 35.8 16.0

PM plus IM 25.0 24.6 60.1 47.6 17.1

NM 43.4 42.5 38.1 36.4 62.8

UM 31.6 32.9 1.8 16.0 20.1

CYP2D6

PM 6.2 2.8 0.7 2.1 3.8

IM 2.6 24.5 48.6 10.0 2.6

PM plus IM 8.8 27.3 49.3 12.2 6.4

NM 88.1 64.7 49.6 85.9 91.4

UM 3.2 8.0 1.2 1.9 2.2

Abbreviations: IM, intermediate
metabolizer; NM, normal
metabolizer; PM, poor metabolizer;
UM, ultrarapid metabolizer.
a Data are based on Zhou et al.9

Notable variations also exist within
the global regions.
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reductions were insufficient to fully compensate for the in-
creased drug exposure. In rare cases, as with aripiprazole treat-
ment, relevant sources such as the US Food and Drug Admin-
istration, European Medicines Agency, CPIC (Clinical
Pharmacogenetics Implementation Consortium), and DPWG
(Dutch Pharmacogenetics Working Group) recommend dose
reduction for patients in the CYP2D6 PM category; however,
these sources offer conflicting information related to the mag-
nitude of dose adjustment. In fact, most of the recommenda-
tions are based on underpowered studies, and insufficient data
are available to allow the estimation of the difference in drug
exposure between metabolizer categories with sufficient
precision.14

Many previous studies, often of limited sample size, have
investigated the effects of CYP2C19 and CYP2D6 genotype on
the exposure of antipsychotic and antidepressant drugs, and
recently published reports substantially increased the num-
ber of participants undergoing genotyping.4-6 Thus, the aim
of this systematic review and meta-analysis of prospective and
retrospective cohort studies was to quantify, with the best at-
tainable precision, the increase of antidepressant and antipsy-
chotic exposure in individuals in CYP2C19/CYP2D6 PM and IM
categories compared with those in the NM category. Individu-
als in the UM category were not included in the analysis ow-
ing to the limited number of studies considering this pheno-
typic group.

Methods
Search Strategy and Selection Criteria
The list of antipsychotic and antidepressant drugs was based
on the list of frequently used antidepressants15 and
antipsychotics.16 The investigated antidepressants included
escitalopram, sertraline, fluoxetine hydrochloride, fluvox-
amine maleate, paroxetine hydrochloride, venlafaxine hydro-
chloride, amitriptyline hydrochloride, nortriptyline hydro-
chloride, mianserin, and mirtazapine; the antipsychotics
included clozapine, quetiapine fumarate, olanzapine, risperi-
done, aripiprazole, and haloperidol lactate. Racemic citalo-
pram hydrobromide was not investigated owing to stereose-
lective metabolism. The information on which CYP450
isoforms are involved in the metabolism of each drug were re-
trieved from the recent consensus guidelines.1 The search was
performed in PubMed, ClinicalTrials.gov, Clinicaltrialsregis-
ter.eu, International Clinical Trials Registry Platform, and CEN-
TRAL databases for reports published from January 1, 1990,
to June 30, 2020. An independent literature survey was per-
formed for each drug and the search terms *NameOfThe-
Drug* AND CYP2C19 OR CYP2D6 were used. During the initial
screening step, all studies that did not deal with drug expo-
sure were excluded, and the remaining studies were consid-
ered for inclusion based on the following criteria: (1) partici-
pants were genotyped for all known common functional
CYP2C19 or CYP2D6 variant alleles with minor allele fre-
quency of greater than 1% according to Zhou et al9; (2) ad-
equate classification of participants into CYP2C19 and/or
CYP2D6 NM, IM, and PM categories was possible based on

genotyping; (3) the study included at least 3 participants per
experimental group; and (4) drug exposure was measured in
a representative way by (a) dose-normalized steady-state
plasma levels, (b) dose-normalized area under the plasma level
(time) curve, or (c) apparent total clearance of the drug (recip-
rocal value). The screening and scanning for eligibility were
performed manually by 2 independent investigators (F.M. and
N.B.). The decision on study inclusion was made by consen-
sus with a third investigator (M.M.J.), with the final checkup
made by consensus among 3 (E.M., M.I.-S., and M.M.J.). Six
domains were assessed by using the standardized risk of bias
in nonrandomized studies of interventions tool,17 and stud-
ies with the critical risk of bias were excluded. No restrictions
were made regarding the study design, participant character-
istics (race, ethnicity, sex, age, smoking status, and patient vs
healthy cohort), treatment duration, drug interactions, and
language.

Data Extraction
The procedures of data acquisition and extraction, as well as
the situations when the authors were contacted to provide the
data that were inaccessible, are described in full detail in
eMethods 1 in the Supplement. If a drug possesses an active
metabolite, the drug exposure was calculated by pooling the
parent compound and active metabolite (active moiety)
exposure.1 Participants were classified into PM, IM, and NM
categories for CYP2C19 and CYP2D6 by using the previously
described classification criteria (Table 1).18 Participants in the
PM category were homozygous carriers of the 2 loss-of-
function (null) alleles for both CYP2C19 and CYP2D6. For
CYP2C19, participants in the IM category carried 1 null and 1
Wt allele, whereas those in the NM category carried the
CYP2C19 Wt/Wt genotype. The CYP2D6 gene possesses alleles
that reduce but do not abolish the enzymatic capacity (Red),
and the CYP2D6 IM category consisted of participants carry-
ing either CYP2D6 Red/Null or CYP2D6 Red/Red genotype,
whereas the subpopulation in the CYP2D6 NM category car-
ries 1 or 2 CYP2D6 Wt alleles. For the purpose of this study, only
the individuals carrying the CYP2D6 Wt/Wt genotype repre-
sented the NM reference group, as suggested by the consen-
sus guidelines.18

Statistical Analyses
Meta-analyses were performed in accordance with the Meta-
analysis of Observational Studies in Epidemiology (MOOSE)
guidelines,19 and the checklist is available in eMethods 2 in the
Supplement. Meta-analyses for specific phenotypes/drugs were
performed and represented graphically if 3 or more studies met
the inclusion criteria. The effect size was the mean exposure
of the PM, IM, or PM plus IM groups divided by the mean
exposure of the NM group, that is, the ratio of means (RoM).20

For example, an IM:NM group RoM of 1.5 means a 1.5 times
higher exposure (ie, a 50% higher exposure in the IM compared
with the NM group). Standard mean differences (Hedges g) were
also calculated and presented in eFigure 3 in the Supplement.
Weighted RoM between subgroups was used in calculation of
pooling effect between studies by fixed-effects meta-
analysis model. Heterogeneity across the studies was assessed
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using the Cochran Q test at a given significance level; the
percentage of total variability attributable to heterogeneity was
quantified by the I2 value. A fixed-effects model was used
because all the pooled studies represent the same genetic/
biological construct; however, owing to considerable
heterogeneity in certain analyses, a post hoc sensitivity analysis
was performed by using the random-effects model, and the
comparison between the fixed- and random-effects model
analyses is presented in eTable 1 in the Supplement. Differences
between the effect sizes of PM vs NM and IM vs NM groups were
examined by using the subgroup test, and when no difference
was observed, a post hoc comparison between the pooled PM
plus IM and NM experimental groups was performed. For each
individual study, the PM plus IM experimental group exposure
was calculated by combining the PM and IM subgroups
according to the Cochrane handbook formula (section 6.5.
2.10 on combining groups).21

Small trial or publication bias was evaluated using the Egger
test for funnel plot asymmetry,22 and funnel plots are pre-
sented in the eFigure 5 in the Supplement. Statistical analy-
ses were performed with RevMan, version 5.4, software (Coch-
rane). Ratios of means for the individual studies were
calculated using Excel, version 2013 (Microsoft Corporation),
according to the previously published formula,20 and subse-
quently entered into RevMan with the generic inverse

variance option. Two-sided α < .05 indicated statistical
significance.

Interpretation of Changes in Drug Exposure
If a lower boundary of the 95% CI for the drug exposure in-
crease of the PM, IM, or PM plus IM groups compared with the
NM group was greater than 1.25-fold, such an effect was con-
sidered clinically relevant. If this was not the case for a statis-
tically significant effect, such an effect was considered pre-
liminary or marginal. This quantitative cutoff was based on (1)
the US Food and Drug Administration limits for bioequiva-
lence (RoM, 0.80-1.25), which are based on the general con-
sideration that the intraindividual variability in drug expo-
sure from oral drug intake to intake is 20%,23 and (2) the
previous finding that changes of this magnitude are associ-
ated with an increased risk of therapeutic failure, measured
by the drug switch rates in 2 recent studies4,5 on patient co-
horts treated with escitalopram (n = 2087) and risperidone
(n = 890).

Results
Of the 2103 initially screened references, 94 unique
studies4-6,24-114 on 8379 unique individuals met the inclusion

Table 2. Overview of Search Process and Studies Incorporated Into Meta-analyses

Analyzed drug Enzyme
No. of
studies

No. of excluded studies No. of
included
studies

No. of individuals
by metabolism categorya

Not dealing with
exposure

Incorrect
genotyping

No usable
data NMb IM PM

Antipsychotics

Aripiprazole CYP2D6 84 58 4 10 12 814 134 90

Clozapine CYP2D6 86 78 3 0 5 33 15 4

CYP2C19 127 65 8

Haloperidol CYP2D6 109 83 10 3 13 532 158 46

Quetiapine CYP2D6 45 44 0 0 1 171 0 20

Risperidone CYP2D6 221 163 9 26 23 1134 186 172

Antidepressants

Amitriptyline CYP2D6 103 94 1 4 4 43 9 4

CYP2C19 34 18 6

Escitalopram CYP2C19 147 135 4 4 4 1110 760 152

Fluoxetine CYP2D6 313 305 4 1 3 8 0 3

CYP2C19 71 27 6

Fluvoxamine CYP2D6 224 212 3 2 7 74 72 0

CYP2C19 6 6 6

Mirtazapine CYP2D6 70 59 2 4 5 142 14 19

Nortriptyline CYP2D6 97 87 3 3 4 28 14 4

Paroxetine CYP2D6 335 318 8 4 5 89 14 11

Sertraline CYP2C19 74 68 1 2 3 565 352 40

Venlafaxine CYP2D6 195 170 5 12 8 509 87 120

CYP2C19 422 198 21

Total 2103 1874 57 75 94 8379b

Abbreviations: IM, intermediate metabolizer; NM, normal metabolizer; PM,
poor metabolizer.
a The total number of patients is less than the sum of patients for all

phenotypes/drugs owing to the fact that CYP2C19 and CYP2D6 genotyping
was performed in certain studies.

b Indicates reference category.
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criteria. Reasons for exclusion are presented in Table 2 and
eTable 2 in the Supplement. eFigure 1 in the Supplement gives
the PRISMA115 flow diagram. A list of included and excluded
studies are presented in eMethods 3 in the Supplement.

Association Between CYP2D6 Metabolizer Status
and Drug Exposure
The CYP2D6 genotype was associated with significant expo-
sure increases for aripiprazole5,25-33,115,116 (eFigure 2 in the
Supplement) (PM plus IM vs NM RoM, 1.48; 95% CI, 1.41-1.57;
12 studies; 1038 patients), haloperidol26,34-36 (eFigure 2 in the
Supplement) (PM vs NM RoM, 1.68; 95% CI, 1.40-2.02; 9 stud-
ies; 423 patients), and risperidone5,26,35,37-41,43-57 (eFigure 2 in
the Supplement) (PM plus IM vs NM RoM, 1.36; 95% CI, 1.28-
1.44; 23 studies; 1492 patients). Nortriptyline exposure58-60

(RoM, 2.36; 95% CI, 2.10-2.65; 3 studies; 37 patients) (eFig-
ure 2 in the Supplement) and paroxetine exposure61-63 (RoM,
3.50; 95% CI, 2.52-4.85; 3 studies; 41 patients) (eFigure 2 in the
Supplement) were significantly increased in the CYP2D6 IM
compared with the NM groups; however, after removing the
studies associated with serious risk of bias (eResults in the
Supplement), these differences were based on fewer than 3 in-
dependent studies. It is uncertain whether the exposure in-
creases observed in the fluvoxamine IM group64-69 and mir-
tazapine PM group70-73 (eFigure 2 in the Supplement) compared
with the NM groups are outside the bioequivalence (1.25) limit.
Compared with the CYP2D6 NM group, marginal exposure in-
creases were observed in the haloperidol IM group74-82 (RoM,
1.14; 95% CI, 105-125; 9 studies; 423 patients) (eFigure 2 in the
Supplement) and venlafaxine IM plus PM group (RoM, 1.19;
95% CI, 1.09-1.29; 8 studies; 716 patients)83-90 (eFigure 2 in the
Supplement). Statistically significant exposure increases based
on less than 3 independent studies compared with the CYP2D6
NM group were observed in the quetiapine-treated PM (RoM,
1.32; 95% CI, 1.10-1.58; 1 study; 191 patients), amitriptyline-
treated IM (RoM, 1.50; 95% CI, 1.23-1.84; 2 studies; 35 pa-
tients), mirtazapine-treated IM (RoM, 1.39; 95% CI, 1.23-1.57;
4 studies; 144 patients), paroxetine-treated PM (RoM, 5.13; 95%
CI, 3.82-6.87; 2 studies; 73 patients), nortriptyline-treated PM
(RoM, 3.32; 95% CI, 2.08-5.29; 1 study; 9 patients), and
fluoxetine-treated PM (RoM, 2.26; 95% CI, 1.68-2.83; 1 study;
11 patients) groups (Table 3).

Association Between CYP2D6 Metabolizer Status
and Drug Exposure
The CYP2C19 genotype was associated with significant expo-
sure increases for escitalopram (eFigure 2 in the Supplement)
(PM vs NM RoM, 2.63; 95% CI, 2.40-2.89; 4 studies; 1262
patients)4,91-93 and sertraline (eFigure 2 in the Supplement) (IM
vs NM RoM, 1.38; 95% CI, 1.27-1.51; 3 studies; 917
patients).6,94,95 Considerable heterogeneity was observed in
the escitalopram meta-analyses, and the elevation in escitalo-
pram exposure in the CYP2C19 IM group was not observed if
the random-effect model was used (eFigure 4 in the Supple-
ment). The CYP2C19 IM and NM groups did not exhibit statis-
tically significant difference in clozapine exposure.96-99 Sta-
tistically significant exposure increases based on less than 3
independent studies compared with the CYP2C19 NM group

were observed in the clozapine-treated PM (RoM, 1.92; 95% CI,
1.32-2.79; 2 studies; 78 patients), fluoxetine-treated IM (RoM,
1.48; 95% CI, 1.24-1.76; 2 studies; 98 patients) and PM (RoM,
2.94; 95% CI, 2.36-3.67; 1 study; 10 patients), sertraline-
treated PM (RoM, 2.70; 95% CI, 2.15-3.39; 2 studies; 577 pa-
tients), and venlafaxine-treated IM (RoM, 1.19; 95% CI, 1.11-
1.31; 1 study; 669 patients) and PM (RoM, 2.13; 95% CI, 1.54-
2.93; 1 study; 443 patients) groups (Table 3).

Heterogeneity, Small Trial or Publication Bias,
and Risk of Bias Assessment
SignificantheterogeneitywasobservedinthearipiprazoleIMand
IM plus PM, escitalopram PM and IM, mirtazapine PM, nortrip-
tyline IM, and venlafaxine IM group meta-analyses. No small trial
or publication bias was observed in the meta-analyses related
to risperidone and aripiprazole (eResults in the Supplement),
whereas asymmetry could not be assessed in other meta-
analyses owing to the insufficient number of included studies
(n < 10).

According to the standardized risk of bias in nonrandom-
ized studies of interventions tool, 23 studies were associated
with a serious risk of bias,24,32,36,38,41,44,46,49,56,58,59,61,62,70,74,

79,81,82,86,103,105,107,112 and 71 studies4-6,25-31,33-35,37,39,40,42,43,45,

47,48,50-55,57,60,63-69,71-73,75-78,80,83-85,87-102,104,106,108-111,113,114 were
associated with moderate risk of bias (ie, the analysis is com-
parable with a well-performed nonrandomized study). The sen-
sitivity analysis results performed for the studies with mod-
erate risk of bias is presented in eTable 3 and eFigure 6 in the
Supplement.

Discussion
The results obtained in this systematic review and meta-
analysis provide precise quantifications of the differences in an-
tipsychotic and antidepressant drug exposure between pa-
tients with PM or IM vs NM CYP2C19/CYP2D6 phenotypes. These
results represent scientific foundations for CYP2D6/CYP2C19
genotype-based dosing recommendations, which could lead to
improved clinical outcomes in drug treatment of patients with
psychiatric disorders.

Although many studies show that CYP2C19 and CYP2D6
PM and IM groups exhibit a significant increase in drug
exposure compared with NM groups, the power of these
studies was insufficient to quantify these exposure
increases with sufficient precision and to evaluate their pro-
spective clinical relevance. The present set of meta-
analyses, which incorporates 8379 CYP2C19 and CYP2D6
genotyped individuals with exposure measurements for 16
frequently used psychiatric drugs, allowed (1) validation of
whether CYP2C19 and CYP2D6 PM or IM phenotypes signifi-
cantly increase the drug exposure compared with the NM
phenotype, (2) differentiation between marginal changes
and clinically relevant drug exposure increases caused by
specific phenotypes, and (3) precise estimation of the mag-
nitude of increase in drug exposure for the clinically rel-
evant exposure changes. High precision of clinically rel-
evant estimates is important for the clinical implementation
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of appropriate dose recommendations for subpopulations
defined by CYP2C19 or CYP2D6 genotype.

There is a consensus in the field about the relevance of the
CYP2C19 and CYP2D6 polymorphism for interindividual vari-
ability in drug metabolism and clinical response,117,118 and
CYP2C19/CYP2D6 genotyping is already included in all cur-
rently commercially available pharmacogenetic tests.119 Phar-
macogenomic recommendations on drug labels offer a tool by
which knowledge of the specific genotype can be translated
to the clinical setting in a quantitative manner. However, the

dosing recommendations are usually not uniform among the
relevant sources,14 and the dosing recommendations on the
US Food and Drug Administration–approved drug labels120-125

clearly do not comply on many points with the findings sum-
marized herein. The results suggest that there is a need to dis-
tinguish between CYP2D6 metabolism categories when de-
ciding on aripiprazole, haloperidol, and risperidone doses and
to distinguish between CYP2C19 metabolism categories when
deciding on escitalopram and sertraline dose. Furthermore, un-
like the PM phenotype, the IM phenotype is seldom consid-

Table 3. Detailed Statistical Report of the Association of Metabolism Status With Antipsychotic and Antidepressant Exposure

Drug Enzyme
No. of
studies

No. of patients by metabolism group

RoM (95% CI) P value I2 value, %Reference Comparator
Antipsychotics

Aripiprazole CYP2D6 5 693 NM 90 PM 1.51 (1.38-1.65) <.001 0

CYP2D6 9 664 NM 134 IM 1.47 (1.38-1.57) <.001 65

CYP2D6 12 814 NM 224 PM plus IM 1.48 (1.41-1.56) <.001 56

Clozapine CYP2D6 1 22 NM 4 PM 1.00 (0.43-2.32) >.99 NA

CYP2D6 2 33 NM 15 IM 1.22 (0.79-1.88) .51 0

CYP2C19 2 70 NM 8 PM 1.92 (1.32-2.79) .008 0

CYP2C19 4 127 NM 65 IM 1.00 (0.84-1.19) .84 10

Haloperidol CYP2D6 4 267 NM 46 PM 1.68 (1.40-1.91) <.001 21

CYP2D6 9 265 NM 158 IM 1.14 (1.05-1.25) .003 0

Quetiapine CYP2D6 1 171 NM 20 PM 1.32 (1.10-1.58) <.001 NA

Risperidone CYP2D6 13 937 NM 172 PM 1.40 (1.30-1.50) <.001 17

CYP2D6 11 469 NM 186 IM 1.31 (1.20-1.43) <.001 44

CYP2D6 23 1134 NM 358 PM plus IM 1.36 (1.28-1.44) <.001 34

Antidepressants

Amitriptyline CYP2D6 1 17 NM 4 PM 1.04 (0.65-1.68) .86 NA

CYP2D6 2 26 NM 9 IM 1.50 (1.23-1.84) <.001 0

CYP2C19 1 4 NM 6 PM 1.07 (0.81-1.41) .58 NA

CYP2C19 1 30 NM 18 IM 1.06 (0.89-1.25) .50 NA

Escitalopram CYP2C19 4 1110 NM 152 PM 2.63 (2.40-2.89) <.001 84

CYP2C19 4 1110 NM 760 IM 1.38 (1.28-1.48) <.001 86

Fluvoxamine CYP2D6 6 74 NM 72 IM 1.52 (1.23-1.89) <.001 0

CYP2C19 1 6 NM 6 IM 0.87 (0.31-2.45) .77 NA

CYP2C19 1 6 NM 6 PM 0.90 (0.31-2.65) .84 NA

Fluoxetine CYP2D6 1 8 NM 3 PM 2.26 (1.68-2.83) <.001 NA

CYP2C19 1 4 NM 6 PM 2.94 (2.36-3.67) <.001 NA

CYP2C19 2 71 NM 27 IM 1.48 (1.24-1.76) <.001 13

Mirtazapine CYP2D6 4 125 NM 19 PM 1.39 (1.23-1.57) <.001 64

CYP2D6 1 17 NM 14 IM 1.51 (1.20-1.91) .010 NA

Nortriptyline CYP2D6 1 5 NM 4 PM 3.32 (2.08-5.29) <.001 NA

CYP2D6 3 23 NM 14 IM 2.36 (2.10-2.65) <.001 74

Paroxetine CYP2D6 2 62 NM 11 PM 5.13 (3.82-6.87) <.001 85

CYP2D6 3 27 NM 14 IM 3.50 (2.52-4.85) <.001 0

Sertraline CYP2C19 3 565 NM 352 IM 1.38 (1.27-1.51) <.001 0

CYP2C19 2 537 NM 40 PM 2.70 (2.15-3.39) <.001 0

Venlafaxine CYP2D6 6 486 NM 120 PM 1.18 (1.04-1.33) .01 50

CYP2D6 3 436 NM 87 IM 1.14 (1.03-1.26) .009 70

CYP2D6 8 509 NM 207 PM plus IM 1.19 (1.09-1.29) <.001 40

CYP2C19 1 422 NM 21 PM 2.13 (1.54-2.93) <.001 NA

CYP2C19 1 422 NM 247 IM 1.19 (1.11-1.31) <.001 NA

Abbreviations: IM, intermediate metabolizer; NA, not applicable; NM, normal metabolizer; PM, poor metabolizer; RoM, ratio of means.
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ered a relevant factor for drug dosing and treatment, which is
noteworthy in relation to results and the fact that more than
half of the East Asian population and a considerable amount
of other populations have the CYP2C19 or CYP2D6 IM
phenotype.9

To approach the question of whether preemptive CYP2C19
and CYP2D6 genotyping can improve the drug treatment out-
come of patients with psychiatric disorders, one must (1) dem-
onstrate the effect of serum concentration on adverse effects
and efficacy and (2) quantify the effect of genotype on serum
concentration. The former has been demonstrated by a series
of pharmacokinetic, clinical, and positron emission tomogra-
phy studies1,126,127 and to an extent by 2 recent meta-analyses
on dose-response c ur ves for antidepressants and
antipsychotics.2,3 The present report addresses the latter, be-
cause it quantifies the effect of PM and IM CYP2C19/CYP2D6
phenotypes on blood levels. Therapeutic drug monitoring can
be used as a tool in personalized dosing because it directly mea-
sures drug blood levels and encompasses all sources of vari-
ability in drug exposure, including CYP2D6/CYP2C19 geno-
type. However, therapeutic drug monitoring becomes
applicable only when the drug level reaches a steady state and
is therefore not a suitable tool for preventing the suboptimal
response or adverse effects during the initial weeks, or some-
times months, of psychiatric drug treatment. This period is criti-
cal for rapid symptom control, patients’ treatment belief, and
adherence; in a therapeutic field characterized by a substan-
tial degree of trial and error, preemptive genotyping has a po-
tential to improve dose personalization and subsequently the
drug treatment outcome as well. Overall, the optimal dose sta-
bilization would be obtained in an ideal clinical situation, in
which a psychiatrist would know the patients’ CYP2D6/
CYP2C19 genotype before the drug treatment initiation to make
the best possible initial dosing decisions. These decisions can
be checked by therapeutic drug monitoring after the steady
state is achieved. However, although several industry-
sponsored clinical trials128-130 advocate the advantage of geno-
type-guided over usual treatment in psychiatry, a well-
designed trial is still necessary to validate and quantify the
clinical utility of preemptive CYP2C19/CYP2D6 genotyping.

Limitations
The most important limitation of this report is the potential
presence of confounding factors, which arise from the nature
of the studies incorporated into meta-analyses. Most of the
studies were performed in naturalistic settings, and the fac-
tors that are known to affect drug metabolism are seldom com-
pletely controlled for. Next, the inclusion and exclusion cri-
teria were designed in a way to eliminate the possibility of

erroneous classification into metabolism categories, and this
revealed the apparent scarcity of representative studies for
many gene-drug interactions. In addition, approximately one-
third of the studies that dealt with drug exposure did not mea-
sure exposure representatively, and the data were therefore not
usable. Although CYP2C19/CYP2D6 UM status may also affect
the exposure of certain drugs, and although the CYP2C19 and
CYP2D6 PM and/or IM status significantly affect drug expo-
sures of most of the analyzed drugs, more studies and larger
cohorts are needed to ascertain the relevance of many gene-
drug interactions (eFigure 8 in the Supplement). Also, in some
cases, the number of usable studies was relatively low and
heterogeneity was considerable; the most notable example is
the analysis of CYP2C19-escitalopram interaction with 4 rep-
resentative studies for each comparison4,91-93 and I2 > 80%. Al-
though the directionality of the effect is apparent, more rep-
resentative studies on this interaction are needed to precisely
quantify the effect size of the exposure increase. Next, it was
possible to address the presence of small trial or publication
bias only for several comparisons owing to the small number
of studies (n < 10) for many gene-drug interactions. Al-
though the test result was negative for the analyzed compari-
sons, we cannot exclude the possibility that the publication
bias is present in some of the gene-drug interaction compari-
sons to a degree. Finally, we were able to compare the effect
of ethnicity in several comparisons by the subgroup test only,
and these post hoc tests are presented in the eFigure 7 in the
Supplement. Although these test results were negative, we can-
not completely exclude the possibility that the exposure in-
creases of certain drugs may be ethnicity dependent to a
degree.

Conclusions
In this systematic review and meta-analysis, the association
between CYP2C19/CYP2D6 genotype and drug levels of arip-
iprazole, haloperidol, risperidone, escitalopram, and sertra-
line was quantified with sufficient precision as to be useful as
a scientific foundation for CYP2D6/CYP2C19 genotype-based
dosing recommendations. In addition, there was an indica-
tion that the CYP2C19/CYP2D6 genotype is associated with
changes in drug levels of clozapine, quetiapine, amitripty-
line, fluvoxamine, fluoxetine, mirtazapine, nortriptyline, par-
oxetine, and venlafaxine. However, more representative stud-
ies focused on these specific gene-drug associations are
necessary for an adequate quantification of the magnitude of
drug level changes and for representative evaluation of the rel-
evance of these changes.
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